If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=(18x-2x^2)/2
We move all terms to the left:
20-((18x-2x^2)/2)=0
We multiply all the terms by the denominator
-((18x-2x^2)+20*2)=0
We calculate terms in parentheses: -((18x-2x^2)+20*2), so:We get rid of parentheses
(18x-2x^2)+20*2
We add all the numbers together, and all the variables
(18x-2x^2)+40
We get rid of parentheses
-2x^2+18x+40
Back to the equation:
-(-2x^2+18x+40)
2x^2-18x-40=0
a = 2; b = -18; c = -40;
Δ = b2-4ac
Δ = -182-4·2·(-40)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{161}}{2*2}=\frac{18-2\sqrt{161}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{161}}{2*2}=\frac{18+2\sqrt{161}}{4} $
| 17m=6953 | | -76+12x=126 | | 6x-8+5x=4 | | 2w+14=34 | | X+4-6=-2x+4-10 | | -48=q/(-8) | | 6x-5=79 | | 6x+-5=79 | | X^2+3(x^2-5)=10 | | y-2.7=5.51 | | 3/d+9=11 | | X^2+3(x^2-5)=0 | | 12w=5w+49 | | (341)8=(225)y | | 10=-2/9v | | 4.9=2.5-0.5y | | 14x=226 | | 16-7w=w | | 8y-7y+2y=24 | | 2x+15=-4x+21 | | (0.20)(10)=0.05x+0.40(10–x) | | 6x-46-4x=14 | | d/3+9=11 | | (0.20)(10)=0.05x+0.40x | | -108/t=-12 | | -129-2x-7x=42 | | 0.8t=0.9+0.9t | | 2(2-7y)5=111 | | 3x+2=1-x | | 5x-(6x+2)=2x-50 | | 3(x-5)-(5x+3)=2x+14 | | 16=2s+2 |